A point set whose space of triangulations is disconnected

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Point Set Whose Space of Triangulations Is Disconnected

In this paper we explicitly construct a triangulation of a 6-dimensional point configuration of 324 points which admits no geometric bistellar operations (or flips, for short). This triangulation is an isolated element in the graph of triangulations of the point configuration. It has been a central open question in polytope combinatorics in the last decade whether point configurations exist for...

متن کامل

Groups whose set of vanishing elements is exactly a conjugacy class

‎Let $G$ be a finite group‎. ‎We say that an element $g$ in $G$ is a vanishing element if there exists some irreducible character $chi$ of $G$ such that $chi(g)=0$‎. ‎In this paper‎, ‎we classify groups whose set of vanishing elements is exactly a conjugacy class‎.

متن کامل

Flip distance between triangulations of a planar point set is APX-hard

In this work we consider triangulations of point sets in the Euclidean plane, i.e., maximal straight-line crossing-free graphs on a finite set of points. Given a triangulation of a point set, an edge flip is the operation of removing one edge and adding another one, such that the resulting graph is again a triangulation. Flips are a major way of locally transforming triangular meshes. We show t...

متن کامل

Flip Distance Between Two Triangulations of a Point Set is NP-complete

Given two triangulations of a convex polygon, computing the minimum number of flips required to transform one to the other is a long-standing open problem. It is not known whether the problem is in P or NP-complete. We prove that two natural generalizations of the problem are NP-complete, namely computing the minimum number of flips between two triangulations of (1) a polygon with holes; (2) a ...

متن کامل

A Homogeneous Space Whose Complement Is Rigid

We construct a homogeneous subspace of 2ω whose complement is dense in 2ω and rigid. Using the same method, assuming Martin’s Axiom, we also construct a countable dense homogeneous subspace of 2ω whose complement is dense in 2ω and rigid.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Mathematical Society

سال: 2000

ISSN: 0894-0347,1088-6834

DOI: 10.1090/s0894-0347-00-00330-1